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Fuzzy queries with linguistic quantifiers for information 
retrieval from data bases 

Marc VuJJn•ki• 

Computer Science Division 
University of California, Berkeley 

Berkeley, California 94720 

ABSTRACT 

This system is an extension of Prolog toward semantic unification for 
processing vague queries on a relational data base containing imprecise or 
uncertain informations. Representation of imprecise and uncertain 
knowledge is based on fuzzy sets and possibility and necessity measures. A 
treatment of fuzzy linguistic quantifiers is presented. 

1. Introduction 

In the past few years, along with the growing importance and use of data bases, there 
has been a growing interest in information retrieval systems. Not only has become impor­
tant the ability to store a large amount of data, but we have also been able to retrieve it 
efficiently. Speed, expressiveness and friendlyness have been among recent considerations 
when designing such systems. 

But one important aspect has somewhat been left apart. This aspect would be the abil­
ity to ask questions in a more natural way, that is to say, in a way that would allow gen­
eral queries, queries that, even though more flexible, could retrieve interesting data (and 
maybe non-interesting data because of this flexibility but this is not the point l. Very often 
a user has to formulate his query in a very precise manner, translating sometimes a gen­
eral concept into numerical values, having therefore a doubt to miss interesting data. 

This system allows you to stick to your general and imprecise concept. Those queries 
can be used either with a classic data base or with a data base where data can also be 
imprecise and expressed in a linguistic way. The system is written in Prolog, which is both 
a relational data base management system and a programming language. The representa­
tion of the imprecision is based on fuzzy logic, theory introduced in 1968 by Pr. Zadeh. Sec­
tion 2 describes some basic comcepts relative to fuzzy logic, data bases and Prolog in order 
to set up the background knowledge for a better understanding of section 3, which covers 
the calculus necessary to handle imprecision in both queries and data. 

2. 

2.1. Data bases and queries 

Basically a relational data base would be constituted of relations containing records. 
For a single relation, every record has the same structure, i.e. the same number of attri­
butes, arranged in always the same order. A relation is defined by a relation name and 
attribute names. It could be viewed as a cartesian product of two domains: the first one con­
taining the objects described by the relation and the second one containing the attributes. 
A column of the table representing the relation stands for an attribute and a row for an 
object: for instance an EMPLOYEE relation can be represented in the following way: 
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EMPLOYEE Name Age Manager Salary 
joe 35 bob 30000 
john 50 joe 20000 
jack 25 joe 16000 
... 

In Prolog the way to represent such a relation is to create a Prolog-clause for each 
row, whose predicate is "employee" and whose arguments are the values of the attributes. 
Clauses do not have a right-hand side. They are also called facts. For instance in this case: 

employee Goe, 35, bob, 30000). 
employee yohn, 50, joe, 20000). 
employee Gack, 25, joe, 16000). 

Then, a typical query in Prolog would be: ''Find all records in such relation, such that attri­
bute i has such value". For instance: "Find all employees, whose manager is bob". This 
query is translated is Prolog in the following way: 

employee (X, _, bob, _)? 

The variable "-" (underscore), called the anonymous variable, tells that we are not 
interested in this attribute. The system will go over every record in the employee relation, 
matching it with the query, that is, matching every instantiated attribute in the query 
with the record under consideration. Whenever the manager is ''bob", the corresponding 
employee name is retrieved. In a query, there is an implicit and between attributes, e.g. 
"employee (X, _, bob, 30000)?" means: ''Find all employees who earn $30000 a year and 
whose manager is bob". You can also retrieve a single record by asking: 

employee yohn, Age, Manager, Salary)? 

The system will answer: Age = 50, Manager = joe, Salary = 20000. But the mecanism is 
quite the same except that, when matching the query against the file, only one record will 
succeed (except if there are more than one employee named john). 

2.2. Imprecise data and queries 

This is how would work a classical data base and a query session in Prolog. Let's now 
describe how we can introduce imprecision in both data and queries and what type of query 
the system can now handle. 

We won't go over the theoretical background about fuzzy logic in great detail. See 
references for that purpose. Let's just recall some basic ideas in order to set up the notation. 
A fuzzy set F in X is represented by its membership function p.F:X -+[0,1] taking its values 
in the [0,1] interval. Suppose that A is an attribute, i.e. a column of our simple data base, 
taking its values in a certain domain X. Imprecision and uncertainty in the knowledge 
about A can be represented by what is called a possibility distribution over the domain X, 
ITA<e>, e standing for a specific employee. Consider a data base, which could be a criminal 
file and contain informations held by the police that could be imprecise or incertain. This 
data base would have such attributes as name, age, height, weight. For a single attribute, 
various types of information can be stored. Here is a few examples and the possibility dis­
tributions associated: 

* 

* 

The suspect age is unknown: 

ITAge(suspect) (x)=1 for all x in [0,100] 

The age is known with certainty to be between 20 and 30, but no further information 
is available: 
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llige(suspect)(x)=1 for 20::5x::530 
fiAge(su.spect)(x)=O for x<20 and x>30. 

The age is best described by a linguistic term such as young: 
fiAge(suspect)(X)=JLyoung(X) for all x in [0,100], where young is a fuzzy set and 
JLyoung its membership function. 

A portion of the data base could have the following aspect: 

SUSPECT Name Age Height Weigh 
john 24 177 160 
joe [25,30] around(180) around(200) 
jack young [170,190] 2:(200) 
jim unknown tall unknown 
... 

young and tall are fuzzy set labels, around and 2: are fuzzy set modifiers. All data in this 
relation are converted into possibility distributions, even though they are crisp values. All 
data are assumed to have only one single truth value; when the data is not crisp but 
described by a possibility distribution, all the possible values are mutually exclusive. 

This type of data base can be stored in Prolog in exactly the same way as shown pre­
viously and the same kind of queries can be treated after having modified the matching 
mecanism. The matching is no longer syntactic but now a match has to be conducted 
between the two semantic representations of apparently different atoms. Queries as: 

"Find all suspects whose age is around 25, whose height is around 170 ems and whose 
weight is around 180 pounds" 

or "Find all suspects that are young, tall and weight between 170 and 200 pounds" 
are typical queries for this system and show much more flexibility and expressiveness than 
traditional queries. Two matching degrees are computed with each record retrieved so that 
they can be ranked. 

In addition to these capabilities, quantification can be specified. In the original query, 
there is an implicit and between attributes and all attributes must be satisfied. Now 
queries such as: 

"Find all records where Age is young or height is tall or weight is around 180" 
or "Find all records where most of the attributes {age is young, height is tall, weight is 

around 180} are true" 

are valid queries. most can be replaced by quantifiers like almosLall, all, half, around_half, 
and so on. The next section will describe the computation of the two matching degrees. 

3. 

3.1. Possibility and Necessity 
Whenever the data stored is uncertain or vague, or when the query is vague itself, a 

match between a unit of data and the query cannot be determined with complete sureness 
because the exact values of both data and query are not known with precision. One way of 
getting, in spite of this, some information is to consider successively the most favourable 
case and the less favourable case and in this way retrieve two matching degrees called 
respectively Possibility and Necessity. 

Let's consider an object s of a data base (in our example s is a suspect like john). A(s) 
is one of the attributes (age, height, ... ) and Q is a unit of query dealing with the same attri­
bute (age is young). Q must be viewed as a union of possible solutions for achieving the 
match, the union (let's call it a) of all ages that can fit the description young. In our 
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example "age is young", is stands for an equality. This is the simplest form of relation that 
can be requested between the attribute and the atom young. But other relations can be 
specified like: much bigger than, around or not. These relations are also described by a 
membership function p.r. The general form of a query focused on only one attribute is the 
following: 

''Retrieve all records s such that A(s) r a" 

a corresponds to young in our case. 

In this framework then, the possibility measure Pos is the possibility that the value of 
the attribute A for the object s is in the set of elements that are in relation r with at least 
one element of a. And the necessity measure Nee is the necessity of the same event, that is 
the necessity that the value of the attribute A for the object s is in the set of elements that 
are in relation r with at least one element of a. 

and 

with 

Pos(r(al!A(s)) = SuR Min (p.r(aJ(x), 0A(s)(x)) 
I In X 

Nec(r(a liA<sl) = lnf Max (p.r(al(X), 1- llA<sJ(x)) 
xmX 

Jlr(a)(X) = SuR Min (p.r(x.y), p.a(y)) 
ymX 

In the case where the information stored in the data base A(s) is precise, that is, has a sin­
gle value, then the two matching degrees are equal. In other cases they are not. p.a is the 
membership function describing the atom a (a = young in our example) and p.r is the 
membership function of the relation r, which can be fuzzy, defined over the cross product 
XxX, where X is the universe of discourse for the attribute A. For instance, around can be 
represented in the following way: 

Y·X 

As an example of those two matching degrees, suppose that we have in the data base 
the assertion "john is young" and that we are looking for people whose age is around 30. 
Both concepts can be represented as fuzzy numbers and drawn on the same diagram. 



1 

0.79 

10 

- 5 -
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We can then conclude that the possibility that john is around 30 is 0.79 and that the neces­
sity that john is around 30 is 0. 

3.2. Agregation of single queries. Fuzzy quantifiers. 
So far, we have only considered queries dealing with only one argument. But very 

often we need to specify queries where more than one argument is implied. The simplest 
example of compound queries is when there is an implicit and between arguments 
(" ... where age is young and height is around 170 and ... "). This case and the symetric one, 
corresponding with or between arguments, are solved by taking respectively the minimum 
and the maximum of atomic degrees. 

Pos(Q 1 and Q2ls) = Min (Pos(Q ds), Pos(Q 2ls)) 

Nec(Q 1 and Q2lsl = Min (Nec(Q tis), Nec(Q 2ls)) 

Pos(Q 1 or Q2ls) =Max (Pos(Q tlsl, Pos(Q 2ls)) 

Nec(Q 1 or Q2ls) = Max (Nec(Q dsl, Nec(Q 2ls)) 

These formulas are only true when the attributes implied in queries Qt and Q2 are 
independent, that is, that their values are not related with one another's. 

But it is also possible to quantify a query in many other ways, according for instance, 
only a certain number of arguments to be satisfied, e.g. 

''Find all records where most of the following conditions are satisfied: age is young, 
height is around 170, weight between 170 and 200, hair color is dark, and so on." 

so that, if for a suspect, only one attribute doesn't match at all, while all others do, this 
record is still retrieved. This gives an even greater flexibility to queries. Examples of 
quantifiers would be: most, almost-all, more than 50%, at least a few ... Quantifiers can be 
represented also by fuzzy sets in the interval [0,1]. Very often the meaning of such linguis­
tic quantifiers is not easy to capture and can depend on the domain but, for instance, most 
can be described by: 
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0.5 o.a 

Once we have those representations, the possibility and necessity degrees for a query like: 
"Find all records where q out of the following conditions are satisfied {A t(s) n at, 
A2(s) r2 a2, ... , An(s) rn an}." 

is computed in the following manner: after computing the values of the two matching 
degrees (possibility and necessity) for each single query Ai(S) ri ai, we have membership 
degrees of the two fuzzy sets of attributes being possibly matched and necessarily matched. 
Then the ratio of the two sigma-counts of these sets over the number of arguments n is 
computed: 

rp = l ~Pos(rwdAi(s)) 
n •=l 

rN = l ~Nec(riaijAi(s)) 
n •=l 

Those two ratios are themselves matched against the definition of the quantifier q. So, 
eventually, the two matching degrees for this query Q are: 

Pos<Qis) = p.q(rP) and Nec(Qis) = p.q(rN) 

3.3. Requirements and Implementation 
The data is stored in a Prolog-fact style, with a predicate (in this case the relation 

name) and arguments. The third line of our table is converted to: 
suspect Gack, young, [170,190], 2:(200)). 

To keep it general, let's call the relation name (here suspect) rel. The general form of a 
question with no quantifiers would be as in classical Prolog except for adding an f before 
rel: frel(.,., ... ,.)? Each argument of the query could be either an uninstantiated variable in 
order to retrieve a unit of data or an atom with optional relation specifications. The implicit 
one is equality. This is the r a form we talked about earlier. Examples of relations are: 
around, at least (2:), at most (:s), ... The atom can be a number, an interval ([20,35]), an 
object name (with no fuzzy definition), or a fuzzy concept (young, tall, ... ). When computing 
the matching degrees, every r a is converted into a fuzzy number, except for the object 
name that has no fuzzy description. In this last case, the match either completely succeed 
or completely fail as in a classical Prolog query. 

Every fuzzy concept has to be defined by a fuzzy number. This fuzzy number can be 
specified for a precise attribute inside a precise relation. Those descriptions are context 
dependent. There can very possibly be two descriptions of the same atom depending on the 
context (good can be viewed very differently for a student grade or for an economic ratio). 
But not only concepts that are used in the data base have to be described by fuzzy numbers 
but also concepts that are likely to be use by a potential user. If the semantic counterpart 
is not present, the match will most of the time fail. 
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With a quantifier, the general form of a query is the following: 

q (Q, [liste of queries])? 

Q is a quantifier whose description has also to be stored. Q can also be and or or. The list of 
queries is a list of queries of the above form frel(.,., ... ,.). 

4. Conclusion 

This work is only a starting point that intends to demonstrate the possibility of stor­
ing imprecise and uncertain knowledge and using it in a way that is closer to our not so 
rigorous commonsense understanding. Once a data base is complete and every possible con­
cept expressed by fuzzy numbers, it becomes no longer useful to remember in what precise 
way the data is stored. And so, the data base can be used very efficiently by first-time 
users. 

The two matching degrees provide then a ranking of data. The user can decide himself 
whether he wants to be very strict and consider .only completely relevant data or on the 
contrary allows only a very slight match. Mechanisms of thresholds can also be introduced 
in order to retrieved data relevant beyond a certain point. 

There are possible extensions in different directions that can be added to this system: 
allowing relations between attributes inside queries, or more possible interactions between 
relations, and also storing and manipulating rules besides facts. 

5. Example 

The following session, even though very simple and not very realistic, shows what 
types of queries the system can now handle. The first part is the data stored including the 
description of the fuzzy numbers. The second part is a sample session on this data base. 

5.1. 

suspect(john, 24, 177, 160). 
suspect(joe, [25,30], around(180), around(200)). 
suspect(jack, young, [170,190], > = (200)). 
suspect(jim, unknown, tall, unknown). 
suspect(joan, around(35), small, < = (140)). 
suspect(julianne, young, tall, unknown). 

The fuzzy numbers are stored using a fnum predicate whose arguments are respectively the 
fuzzy set label, a relation name and an index inside the relation to make it specific to a pre­
cise attribute, and four numbers representing the fuzzy number. The fuzzy number (Mi, 
Ms, Ei, Es) takes the value 1 between Mi and Ms and the value 0 before Mi-Ei and after 
Ms+ Es. The shape of the curb is trapezoidal. Only the two last can take an infinite value. 

fnum(old, suspect, 2, 70, 90, 10, inf). 
fnum(young, suspect, 2, 15, 25, 10, 10). 
fnum(very_tall, suspect, 3, 195, 200, 10, inf). 
fnum(tall, suspect, 3, 175, 190, 10, 10). 
fnum(medium, suspect, 3, 165, 180, 10, 10). 
fnum(small, suspect, 3, 120, 155, inf, 15). 
fnum(unknown, suspect, lnd, 10, 10, inf, inf). 

The following fuzzy numbers are modifiers and quantifiers. Quantifiers can be either rela­
tive or absolute. 

fnum(around, suspect, 2, -2, 2, 3, 3) :- !. 
fnum(around, Rei, abs, -10, 10, 20, 20) :- !. 
fnum(around, Rei, Ind, -5, 5, 8, 8) :- lnd /= rei. 
fnum(> =,Rei, lnd, 0, 0, 0, infl. 
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fnum( < =, Rei, Ind, 0, 0, inf, 0). 
fnum(much_greater, Rei, lnd, 4, 4, 2, inf). 
fnum(most, Rei, rei, 80, 100, 50, inO. 
fnum(almosLall, Rei, rei, 90, 100, 20, inf). 
fnum(haif, Rei, rei, 45, 55, 10, 10). 
fnum(all, Rei, rei, 100, 100, 0, inf). 

fsuspect(jack, Age, Height, Weight)? 
Nee= 100,Pos = 100 
Age= young 
Height= [170, 190] 
Weight= > =(200l 

fsuspect(X, around(25), around(170), _)? 
Nee = 75, Pos = 75 
X= john 

Nee = 0, Pos = 100 
X= joe 

Nee = 0, Pos = 100 
X= jack 

Nee = 0, Pos = 100 
X= jim 

Nee = 0, Pos = 0 
X= joan 

Nee = 0, Pos = 100 
X= julianne 

fsuspect(X, [20, 30], medium, > = (170))? 
Nee = 0, Pos = 0 
X= john 

Nee = 27, Pos = 100 
X= joe 

Nee = 0, Pos = 100 
X= jack 

Nee = 0, Pos = 100 
X= jim 

Nee = 0, Pos = 0 
X= joan 

Nee = 0, Pos = 100 
X= julianne 

quest(and, [fsuspect(X, [20, 30], _, _), fsuspect(X, _, medium, _), fsuspect(X, _, _, 
> = (170))])? 
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Nee= 27, Pos= 100 
X= joe 

Nee= 0, Pos= 100 
X= jack 
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quest(most, [fsuspect(X, [20, 30], _, _), fsuspect(X, _, medium, _), fsuspect(X, _, _, 
> = (170))])? 
Nee= 72, Pos= 72 
X= john 

Nee= 90, Pos= 100 
X= joe 

Nee= 6, Pos= 100 
X= jack 

Nee= 0, Pos= 100 
X= jim 

Nee= 0, Pos= 0 
X= joan 

Nee= 0, Pos= 100 
X= julianne 

quest(almost _all, [fsuspect(X, [20, 30], _, _), fsuspect(X, _, medium, _), fsus­
pect(X, _, _, > = (170))])? 
Nee= 0, Pos= 0 
X= john 

Nee= 25, Pos= 100 
X= joe 

Nee= 0, Pos= 100 
X= jack 

Nee= 0, Pos= 100 
X= jim 

Nee= 0, Pos= 0 
X= joan 
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fsuspect(X, young, tan, around(lSO))? 
Nee= 0, Pos= 0 
X= john 

Nee= 0, Pos= 38 
X= joe 

Nee= 0, Pos= 0 
X= jack 

Nee= 0, Pos= 100 
X= jim 

Nee= 0, Pos= 0 
X= joan 

Nee= 0, Pos= 100 
X= julianne 

quest(most, [fsuspect(X, young, _, _), fsuspect(X, _,tall, _), fsuspect(X, _, _, 
around(l80))])? 
Nee= 72, Pos= 72 
X= john 

Nee= 10, Pos= 98 
X= joe 

Nee= 40, Pos= 72 
X= jack 

Nee= 6, Pos= 100 
X= jim 

Nee= 0, Pos= 0 
X= joan 

Nee= 72,Pos= 100 
X= julianne 
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Prolog Code 

% f is a question in regular Prolog. Here the program will look for 
% solutions trough a fuzzy pattern matching. 
% this generates all clauses of the data base that are of the same 
%kind as the one in the question. 

ftQ) :- fq(Q, Nee, Pos), 
prin("O, ''Nee = ", Nee, ", Pos = ", Pos). 

fq(Q, Nee, Pos) :- functor(Q, F, NJ, 
functor(Ql, F, N), 
Ql, 
uniftQ, Ql, Nee, Pos, F). 

% quest is a question including a quantificator and several atomic questions 
% of the above form, ie f followed by the name of the relation. 
% This quantifiation allows the user to specify if he wants all the atomic 
% questions true at the same time or only almost all, half of them, and so on .. 
% abs and rei specify whether the quantifier is of the first kind (absolute 
% count) or of the second kind (relative count). 

q(Quant, Liste) :- quest(Quant, Liste, Nee, Pos), 
prin("O, "Nee = ", Nee, ", Pos = ", Pos). 

quest(Quant, Liste, Nee, Pos) :- explicit(Liste, Liste_expl, Lu), 
questl(Quant, Liste_expl, Nee, Pos). 

o/c explicit allows the user to specify a same query for more than one 
% argument of the relation in a compact way. 
%For instance: arguments(fpers, 2, 4, >=(good), L) will be understood in 
%the folJowing way: [fpers(_,> =(goodl,_,_,_,_),fpers(_,_,> =(good),_,_,_), 
% fpers(_,_,_, >=(good),_,_)], the connective being specified as usually. 
% The first index is 1. 
% un is a function that bound together variables whose indexes are given 
% in the list L. 

explicit([], [], L). 

explicit([arguments(Frel, 11, 12, Cl, LauliLJ, [ElliLcons], Lu) :­
Il < = 12, 
I ., 
imax(Frel, Imax), 
functor(Ell, Frel, lmax), 
arg(ll, Ell, Cl), 
un(Ell, Lau, Lu), 
Ilp is 11 +1, 
explicit([arguments(Frel, 11p, 12, Cl, Lau)ILJ, Lcons, Lu). 

explicit([arguments(Frel, 11, 12, Cl, Lau)ILJ, Ll, Lu) :­
Il > I2, 
I ., 
explicit(L, Ll, X). 

explicit([AILJ, [AILlJ, Lu) :- explicit(L, Ll, Lu). 
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un(El, [], []). 
un(El, [AIR], [AliRl]) :- arg(A, El, Xl, Al = X, un(El, R, Rl). 

questl(or, Liste, Nee, Pos) :- maxdeg!Liste, Nee, Pos). 

questl(and, Liste, Nee, Pos) :- mindegrListe, Nee, Pos). 

questl(Quant, Liste, Nee, Pos) :- fnum!Quant, Rei, abs, Mi, Ms, Ei, Es), 

' ., 
sumdeg(Liste, N, PJ, 
nec(Mi, Ms, Ei, Es, N, N, 0, 0, Nee), 
pos!Mi, Ms, Ei, Es, P, P, 0, 0, Pos). 

questl(Quant, Liste, Nee, Pos) :- fnum(Quant, Rei, rei, Mi, Ms, Ei, Es), 

' ., 
agreg(Liste, N, P), 
nedMi, Ms, Ei, Es, N, N, 0, 0, Nee), 
posrMi, Ms, Ei, Es, P, P, 0, 0, Pos). 

% agreg computes the fuzzy cardinality. 

agreg(Liste, N, P) :- nbel(Liste, No), 
sumdeg(Liste, Nee, Pos), 
N is NedNo, 
Pis Pos/No. 

nbel([], 0). 
nbel([XIYJ, N) :- nbel(Y, Nl), N is Nl+l. 

% sumdeg realizes the summation of the matching degrees of terms of a list. 
% maxdeg computes the greatest degrees. 

sumdeg([J, 0, 0). 
sumdeg([XIYJ, Nee, Pos) :- sumdeg(Y, N, P), 

X= .. [FIAJ, 

maxdeg([], 0, 0). 

name(F, Aux), 
Aux = [FuiRJ, 
name(Rel, RJ, 
Q = .. [RellA], 
FQ = .. [fqi[Q, Nl, Pl]], 
FQ, 
Nee is N+Nl, 
Pos is P+ Pl. 

maxdeg([XIYJ, Nee, Pos) :- maxdeg(Y, N, P), 
X= .. [FIAJ, 
name(F, Aux), 
Aux = [FuiRJ, 
name(Rel, R), 
Q = .. [RellA], 
FQ = .. [fqi[Q, Nl, Pl]], 
FQ, 
max(N, Nl, Nee), 
max(P, Pl, Pos). 
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mindeg([], 100, 100). 
mindeg([XIYJ, Nee, Pos) :- mindeg(Y, N, P), 

X= .. [FIAJ, 
name(F, Aux), 
Aux = [FuiRJ, 
name(Rel, R), 
Q = .. [RellA], 
FQ = .. [fqi[Q, N1, P1]], 
FQ, 
min(N, N1, Nee), 
min(P, P1, Pos). 

% these clauses are for producing listings of execution. Use tell(filename) 
% if you want to store this in a file. 

doc(Q) :- prin("O, "0, Q), Q = .. L, uninarg(L, Luni), 
Q, print(""), prinarg(Luni,O). 

uninarg([], []). 
uninarg([XIYJ, L) :- var(X), !, uninarg(Y, L1), append([X], L1, L). 
uninarg([XIYJ, L) :- X = [_,_], !, 

uninarg(X, L1), 
uninarg(Y, L2J, 
append(Ll, L2, U. 

uninarg([XIYJ, L) :- X = .. XE, 
XE I= [_], !, 
uninarg(XE, L1 1, 

uninarg(Y, L2), append(L1, L2, L). 
uninarg([XIYJ, L) :- uninargfY, L), !. 

prinarg([J,X). 
prinarg([XIYJ,I) :- print("_", I, "= ", X, " ''), 11 is I+ 1, prinarg(Y,Il). 
append([], L, L). 
append([XIYJ, L1, [XIL2]) :- append(Y, L1, L2). 

% make the two lists of arguments match together. 

unifl:C, C1, Nee, Pos, F):- C = .. L, 
C1 = .. L1, 
L = [_ILA], 
L1 = [_ILA1J, 
unifl(LA, LA1, Nee, Pos, F, 1). 

% unifl is the unification of the two lists of arguments 
% unifa is the unification of two arguments 
% the agregation of the necessity and possibility degrees are made 
% by the min operation, assuming the independance of the arguments 

unifl([J, [], 100, 100, F, D. 
unifl([A1IL1J, [A2IL2], Nee, Pos, F, I) :- unifa(A1, A2, N, P, F, I), 

11 is I+ 1, 
unifl(L1, L2, Ne, Po, F, 11), 
min(N, Ne, Nee), 
min(P, Po, Pos). 



min(X, Y, X):- X < = Y, !. 
min(X, Y, Y). 

max(X, Y, X) :-X > = Y,!. 
max(X, Y, Y). 
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% fnum is the fuzzy number attached to the argument inside the relation 

unifa(A, A, 100, 100, F, I) :-!. 
unifa(Al, A2, Nee, Pos, F, I) :- fnum(Al, F, I, Mil, Msl, Eil, Esl), 

fnum(A2, F, I, Mi2, Ms2, Ei2, Es2), 

' ., 
pos(Mil, Msl, Eil, Esl, 

Mi2, Ms2, Ei2, Es2, Pos), 
nec(Mil, Msl, Eil, Esl, 

Mi2, Ms2, Ei2, Es2, Nee). 

%The possibility and necessity that the fuzzy event F (Mil, Msl, Eil, Esl) 
% is true knowing C (Mi2, Ms2, Ei2, Es2) is defined by 
% Pos(F) = sup min (uF(w), uC(w)) and 
% Nec(F) = inf max (uF(w), 1-uC(w)). 

pos(Mil, M, Eil, Esl, 
M, Ms2, Ei2, Es2, 100) :- !. 

pos(Mil, Msl, Eil, Esl, 
Mi2, Ms2, Ei2, Es2, OJ :- Esl /= inf, 

Ei2 '= inf, 
Msl + Esl < = Mi2-Ei2, !. 

pos(Mil, Msl, Eil, 0, 
Mi2, Ms2, 0, Es2, 0) :- Msl < Mi2, !. 

pos(Mil, Msl, Eil, inf, 
Mi2, Ms2, Ei2, Es2, 100) :- Msl < Mi2, !. 

pos(Mil, Msl, Eil, Esl, 
Mi2, Ms2, inf, Es2, 100) :- Msl < Mi2, !. 

pos(Mil, Msl, Eil, Esl, 
Mi2, Ms2, Ei2, Es2, Pos) :- Msl < = Mi2, 

Pos is 100-(100*Mi2-100*Msl)/(Esl + Ei2), 

pos(Mil, Msl, Eil, Esl, 
Mi2, Ms2, Ei2, Es2, Pos) :- Ms2 < Mil, 

pos(Mi2, Ms2, Ei2, Es2, 
Mil, Msl, Eil, Esl, Pos), 

!. 
pos(Mil, Msl, Eil, Esl, 

Mi2, Ms2, Ei2, Es2, 100) :- !. 

nec(Mil, Msl, Eil, Esl, 
Mi2, Ms2, Ei2, Es2, Nee) :- ng(Mil, Eil, Mi2, Ei2, Ng), 

nd(Msl, Esl, Ms2, Es2, Nd), 
min(Ng, Nd, Nee), !. 

ng(Mil, inf, Mi2, Ei2, 100) :- !. 
ng(Mil, Eil, Mi2, Ei2, 0) :- Mi2 < Mil-Eil, !. 
ng(Mil, Eil, Mi2, inf, 0) :- !. 
ng(Mil, Eil, Mi2, Ei2, 100) :- Mil < = Mi2-Ei2, !. 
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ng(Mil, Eil, Mi2, Ei2, Ngl :- Ng is IOO*(Mi2-Mil+Eil)/(Eil+Ei2), !. 

nd(Msl, inf, Ms2, Es2, 100) :- !. 
nd(Msl, Esl, Ms2, Es2, 0) :- Msl + Esl < Ms2, !. 
nd(Msl, Esl, Ms2, inf, 0) :- !. 
nd(Msl, Esl, Ms2, Es2, 100) :- Ms2+Es2 < = Msl,!. 
nd(Msl, Esl, Ms2, Es2, Ndl :- Nd is 100*(Msl-Ms2 + Esl)/(Esl + Es2), ' 

% The fuzzy numbers are defined by four numbers. Only the two last can 
% take an infinite value. 

% this line is necessary for the system to be able to answer a 
%imprecise question. 

fsuspect(Xl, X2, X3, X4) :- frsuspect(Xl, X2, X3, X4)). 

imax(fsuspect, 4). 

% fnum is the fuzzy number attached to the argument inside the relation 
% lnd is the rank of the argument. 

% The fuzzy number (Mi, Ms, Ei, Es) takes the value 1 between Mi and Ms 
% and the value 0 between Mi-Ei and Ms+ Es. The shape of the curb is 
% trapezoidal. 

fnum(Arg, Rei, abs, X, X, 0, 0) :- integer(Arg), !, X = IOO*Arg. 
fnum(Arg, Rei, Ind, X, X, 0, 0) :- integer(Arg), Ind /= rei, !, X = Arg. 
fnum(Comp(Pred), Rei, I, X, Y, Z, T) :-

fnum(Comp, Rei, I, Mil, Msl, Eil, Esl), 
fnum(Pred, Rei, I, Mi2, Ms2, Ei2, Es2), 

' ., 
X is Mil+ Mi2, 
Y is Msl + Ms2, 
genadd(Eil, Ei2, Z), 
genaddiEsl, Es2, T). 

fnum([X,Y], Rei, abs, XI, Yl, 0, 0) :- !, Xl = IOO*X, Yl = IOO*Y. 
fnum([X,Y], Rei, lnd, X, Y, 0, 0) :- Ind /= rei. 

% genadd allows the two arguments to take infinite values (inf). 

genadd(inf, B, inf) :- !. 
genadd(A, inf, inf) :- !. 
genadd(A, B, X) :- X is A+ B. 


